Annesya Banerjee

annesya_banerjee@g.harvard.edu
 https://annesya.github.io/
 https://www.linkedin.com/in/annesya-banerjee-313365167
 @BanerjeeAnnesya
 Research Interests: Auditory Perception, Hearing Prostheses, Computational Neuroscience

Education

2021 - 2027	PhD Candidate, Harvard University Program in Speech and Hearing Bioscience and Technology (SHBT)
	Thesis Advisor: Dr. Josh McDermott
2017 – 2021	Department of Electronics and Tele-Communication Engineering (ETCE)

Research Experience

June'22 – Present	Graduate Research Assistant, Dept. of Brain and Cognitive Sciences, MIT <i>Advisor</i> : Dr. Josh McDermott Developing neural network based models to accurately simulate cochlear implant (CI) mediated hearing perception. The goal of this work is to disentangle the roles of signal processing and brain plasticity in shaping CI perception, understand the factors behind large variability in patient outcomes, and utilize the model to propose improved stimulation strategies for future CIs.
Jan.'22-May'22	 Rotation Student, Massachusetts Eye and Ear, Harvard Medical School Advisor: Dr. Heidi Nakajima * Designed a piezo-electric film based middle-ear microphone to sense acoustic signals for a fully-implantable cochlear implant. * Tested the microphone prototype on multiple human cadaveric temporal bones for stability, sensitivity and frequency response analysis. * Developed the MATLAB code for experimental result analysis and comparison to commercially available microphones.
July.'21-Dec.'21	 Rotation Student, Massachusetts Eye and Ear, Harvard Medical School Advisor: Dr. Sunil Puria * Contributed in developing the Python code for using the Simulation Based Infer- ence (SBI) toolbox to estimate the parameters of finite element models of the middle and inner ear. * Developed the MATLAB code to compare the estimated results with experimental data using different error metrics and for different inference algorithms.
May'19-July'19	 Undergraduate Research Intern, Indian Institute of Science (IISc) Advisor: Dr. Prasanta K. Ghosh * Designed and implemented the prototype of a multichannel acoustic array system to be used for adventitious lung sound localization. * Developed the MATLAB code for filtering the DC and ADC noise from the recorded signals as well as compensate for the hardware related non-linearity.
Jan.'19 – June'21	 Undergraduate Research Assistant, Jadavpur University Advisor: Dr. P. Venkateswaran * Developed the entire hardware and software system of a drone with capabilities to capture sound, perform on-board computation and identify the azimuth and elevation location of the sound source(s) relative to the drone position. * Demonstrated the utility of the drone system to aid in search and rescue operations during low visibility conditions. * Extended the work to incorporate 5G communication in the drone system.

Teaching Experience

Sept.'22 – Dec.'22

MIT Brain and Cognitive Sciences, Teaching Assistant MIT BCS 9.016 Introduction to Sound, Speech, and Hearing Instructors: Dr. Satrajit Ghosh, Dr. Heidi Nakajima, Dr. Sunil Puria

Technical Skills

Machine Learning	Tensorflow, PyTorch
General Coding	Python, MATLAB, C, LaTeX, SLURM
Behavioral Research	Amazon Mechanical Turk, Prolific, PsychToolbox
Hardware Design	Microcontrollers (8051, Arduino), Raspberry Pi, Texas Instruments (TI), Digital Signal Processing (DSP) Kit, Analog Devices Analog-Digital-Converters (ADC)
Design Tools	Anaconda, Circuit Maker, Proteus, Xilinx Vivado Suite, COMSOL
Audio Analysis Tools	Audacity, PRAAT

Awards and Achievements

Grants Awarded

2021-2022	5G-enabled Listener Drone: Integrating 5G with Acoustic Drone for Disaster Relief Department of Telecommunication, Govt. of India Amount: INR 6,00,000
2020	Design of Portable Ventilators for COVID-19 Crisis University of California, Berkeley, USA Amount: USD 1,000
2019-2020	Listener Drone: Incorporating Audition Abilities in Drones and Its Potential Application for Search and Rescue Operations WeRobotics, USA Amount: USD 15,000

Research Publications

2023 Zhang, J., Graf, L., Banerjee, A., Yeiser, A., McHugh, C., Kymissis, J., Olson, E., Nakajima, H., Lang, J., 2023. An Implantable Piezofilm Middle Ear Microphone: Performance in Human Cadaveric Temporal Bones. *Journal of the Association for Research in Otolaryngology (JARO)*. [Submitted]

Research Publications (continued)

Banerjee, A., Nilhani, A., Dhabal, S., Venkateswaran, P., 2021. A novel sound source localization method using a global-best guided cuckoo search algorithm for drone based search and rescue operations. *In Unmanned Aerial Systems: Theoretical Foundation and Applications*, pp. 377-417. Academic Press.

Patents

2022 Annesya Banerjee, Achal Nilhani. An intelligent cough and speech sensing visual monitoring device. Intellectual Property Rights of India #399949

Research Presentations

- 2023 **Banerjee, A.**, Saddler, M., McDermott, J. (February, 2023). Neural Network Models of Hearing Through a Cochlear Implant. *46th Mid-Winter Meeting - Association for Research in Otolaryngology (ARO)*, Orlando, Florida. **[Poster]**
- 2022 Zhang, J.*, Yeiser, A.*, Banerjee, A.*, Cary, B., Graf, L., McHugh, C., Kymissis, J., Olson, E., Nakajima, H., Lang, J. (July, 2022). A Comparison of Implantable Microphones Constructed Around a Piezoelectric Polymer. 14th Mechanics of Hearing (MoH) Meeting, Helsingør, Denmark. *equal contributions. [Talk]
 - Yeiser, A.*, Banerjee, A.*, Zhang, J., Graf, L., McHugh, C., Song, Y., Kymissis, J., Olson, E., Nakajima, H., Lang, J. (June, 2022). Implantable Piezoelectric-Polymer Microphones for the Middle Ear. *oth International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO)*, Boulder, Colorado. *equal contributions. [Talk]
 - Motallebzadeh, H., Deistler, M., Schönleitner, F., Banerjee, A., Macke, J., Puria, S. (June, 2022). Training a Machine-Learning Differential Diagnostic Tool for Conductive Hearing Loss Using Mechanistic Models. *9th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO)*, Boulder, Colorado. [Talk]
 - Banerjee, A., Saddler, M., McDermott, J. (October, 2022). Neural Network Models of Hearing Through a Cochlear Implant. *Harvard University SHBT End of Summer Talk*, Falmouth, MA. [Talk]
- 2020 **Banerjee, A.** (October, 2020). 5G enabled drone system with audition capabilities application in search and rescue operations. *Dept. of Telecommunications, India India Mobile Congress*. (Virtual due to Covid). **[Talk]**
 - **Banerjee, A.** (July, 2020). Ways to continue scientific research amidst global pandemic. Overseas Volunteers for a Better India (OVBI) Foundation Virtual. [Invited Talk]
 - **Banerjee, A.** (February, 2020). Listener Drone for Search and Rescue Operations. *WeRobotics Unusual Solutions Final Pitch Event*, Nairobi, Kenya. **[Talk]**

Outreach/Leadership Activities

2023	Mentoring Co-Chair, Harvard Graduate Women In Science and Engineering
	Seminar Coordinator, Science In The News
	Teaching Assistant , Program of Ragon and IMES in Science and Medicine Topic - Introduction to Neuroscience; Target Audience - High School students.
2022	Volunteer , Cambridge Science Festival Demonstrated and explained the science of auditory illusions to general public.

Outreach/Leadership Activities (continued)

2020 – Present	Co-Founder , JU UAV Innovators' Lab Non-profit educational organization to provide scientific (software and hardware) re- sources to students for open-source project development.
2020 - 2021	Student Engagement Speaker , Jyangra High School Talk Title: Drones and Humans - An Application Perspective.
2019 – 2021	 Team Leader, Team Jadavpur University IEEE Signal Processing Cup 2019 (Rank: 13); IISc DiCOVA Challenge 2021 (Rank: 16); Microsoft Deep Noise Suppression Challenge 2021 (Rank: 14) Technical Leader, Team CoVentilator UC Berkeley CEND Hackathon 2020 (Winner)
2018 – 2021	 Mentor, Jadavpur University Science Club Mentored 150+ freshmen, sophomores in learning robotics, circuit design, programming, etc. Organizing Member, Annual Science Workshop, Jadavpur University Hosts 100+ high school students annually for 2 days workshop on experimental physics, chemistry, basic robotics.

Personal Projects

April'20 – June'21	▼ Viral Cough Cop Device: An intelligent, low-cost (under \$135) device for first- level screening and identification of potential COVID-19 suspects in public places. Project selected as one of the Top 32 Global Finalists of <i>Microsoft</i> and <i>HCL</i> or- ganized Better Health Hackathon 2020.
Feb.'21 – May'21	 Moog-Emotion: A personalized musical instrument to recognize human emotion through speech and play mood-lifting music. Assistive device for healing mental stress, depression and other psychological disorders. Project selected for demonstration at Guthman Musical Instrument Fair 2021 organized by <i>Georgia Institute of Technology</i>. Received Best Hardware Project and Best Presentation Award by <i>Syracuse University</i>. Project blog at: https://devpost.com/software/moog-emotion
Aug.'20 – Oct.'20	AuDiNoise: A deep learning based hybrid filtering approach for acoustic noise suppression. : Developed a deep learning + adaptive filtering based hybrid algorithm for joint estimation and suppression of non-stationary background noises from audio signals during teleconferencing.
Aug.'20 – Nov.'20	Echo Debar: Real-Time Acoustic Echo Cancellation by Joint Implemen- tation of Adaptive Filtering and Deep Learning : Developed a novel acoustic echo cancellation algorithm that uses classical signal processing filters combined with deep learning models for real-time echo cancellation in telecommunication devices.
March'20 – May'20	COVENTILATOR: Development of Low-Cost Ventilators for Patients dur- ing COVID-19 Pandemic: Worked as the Technical Leader in an <i>international</i> team of 6 members. Designed a low-cost (<\$300), easily deployable, medical grade ventilator system for COVID-19 patients. Available at only 1/10th the cost of ICU ventilators. Our design was selected as the Winner Project by University of California Berkeley at CEND Hackathon 2020.