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15.1 Introduction

In recent years, unmanned aerial vehicles (UAVs) or drones have gained extreme
popularity in military operations and for different commercial and civilian use
(Okutani et al., 2012). Due to their easy accessibility and affordability, drones
have found ample applications in all business areas and fields including pho-
tography, filmmaking, agriculture, journalism, construction, entertainment, and
several innovative scientific works during the 2010s. With the development and
technological advancement, unmanned, autonomous, and semiautonomous sys-
tems have accelerated the emergency tasks including security, mapping, search
and rescue (SAR) operations, and so on (Restas, 2015). Being cost-effective and
quickly accessible, drones have become an inseparable part of SAR operations
after disasters like floods, tsunamis, earthquakes, landslides, and avalanches,
searching for missing people and immigrants in dense forests, mountains, etc.
These unmanned systems are the only option to continue the search in situa-
tions which are almost inaccessible to the first response teams. Particularly, the
faster mobility offered by aerial systems makes them more advantageous than
ground-based vehicles. Further, for effective rescue operation, it is necessary
to quicken the process by covering a large region of operation at a time which
would require the involvement of huge human resources unless drones were
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employed. Time efficiency achieved using drone-based search operations has
made this technology the most beneficial one for emergency service personnel
with police officers, firefighters, and volunteers from rescue teams. Most impor-
tantly, the application of drones for searching has reduced the threats offered to
the lives of rescuers in disaster-affected areas, thus leading to a reduction in the
probability of loss of human resources of a society. Especially in emergency sit-
uations like a nuclear explosion, it is harmful to the rescuers to visit the area at
that moment but at the same time, it is necessary to look for victims and rescue
them as early as possible. Such accelerated operations with minimum capital are
achieved by the unmanned aerial systems.

In SAR, the unmanned systems are generally equipped with different sensors
for real-time data acquisition to search for victims as well as to map the sur-
rounding environment simultaneously. The traditional sensors used are optical
sensors or cameras with high resolution and image quality for vision, thermal
cameras for heat sensing, wireless sensor, laser, and sonar (Gala et al., 2018;
Kwok et al., 2005). However, the vision-based sensors have gained more impor-
tance over the other sensors due to their capability to cover a wider range along
with low energy consumption and less ambiguity in the acquired data. These
vision-based drones are mainly useful in real-time imaging of the disaster-
struck area and identification of distressed people after the natural calamity.
Though these UAV-embedded tools with camera system have found numerous
applications in critical search operations over several years and have gained the
attention of a large community of researchers all over the world, they have some
inherent disadvantages. First of all, these embedded optical sensors cannot per-
form very well in low light areas, in foggy weather, and during the night. In
a few situations, such as where the victims are trapped under debris, it is in-
deed difficult to locate them at the earliest. Thermal sensors have proven to
degrade in performance when the environmental temperature rises, thus limit-
ing the application of these sensor-equipped drones to continue SAR in wildfires
and assisting firefighters. For accurate identification, through the acquisition of
high quality images (or videos) the embedded sensors need to be highly sensi-
tive and sophisticated which in turn increases the net cost of the entire system.

Acoustic sensor-equipped drones have not yet been used for real-time SAR
operations, though these systems find potential applications in situations where
the traditional sensors cannot provide accurate and satisfactory results. Apply-
ing the philosophy of acoustic scene analysis, particularly focusing on sound
source localization (SSL) by exploiting the features of sensor data, it is possible
to use the drone-embedded system to identify victims in disaster-struck regions.
This sensor system provides the drones with audition capability, functioning
similarly as human ears to sense audio signals. The system will require an array
of microphones embedded in the drone to capture audio data. As the distressed
or missing people seek for help by shouting loudly, the drone embedded audi-
tory sensors receive the speech signal. In literature, research to localize sound
sources by analyzing the data captured by an array of microphones is ongoing.
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Depending on the array structures and features of the recorded data, different
studies have been carried out. A similar approach can be implemented for SAR
operations. For this application, the drone-embedded systems look for the victim
as this is the origin of the acoustic signal. For this mobile system, it is not practi-
cally possible to identify the absolute location of the source. Localization needs
to be performed with respect to the current position of the drone system, which
is useful for the source tracking applications. However, this approach has some
inherent difficulties that need to be addressed before implementation of the sys-
tem. The primary challenge in practical realization of the drone-based audition
system lies in the fact that the quality of the audio data captured by the acoustic
sensors is heavily reduced in the presence of stationary background and nonsta-
tionary ego and wind noises (Löllmann et al., 2014). The effect of such noises is
not unique for aerial systems; rather, all robotic systems equipped with rotating
components like motor, joints, and fans deal with this type of noise. The rest of
the chapter is organized as follows. In Section 15.2, a literature survey related
to the SSL and drones is presented. The problem formulation of the proposed
denoising approach and localization technique is discussed in Section 15.3. The
proposed algorithms are presented in Section 15.4. In Section 15.5, the verifica-
tion of proposed algorithms is carried out. Finally, a discussion of the proposed
approach and our conclusion are presented in Sections 15.6 and 15.7, respec-
tively.

15.2 Literature survey

SSL algorithms have gained profound application in the field of auditory scene
analysis – SSL along with source separation techniques are being used inten-
sively for speaker localization, and identification-based technologies. SSL has
applications in interactive robotic systems. Several researchers have focused on
the study of SSL algorithms. Besides, researchers are working on techniques
to deal with the issues related to noise, including ego noise and wind noise, in
robotic systems. Kwok et al. (2005) studied the different geometric structures of
the microphone array to facilitate SSL using time difference of arrival (TDOA)
for human–robot interaction systems. The authors in Kwok et al. (2005) applied
an evolutionary genetic algorithm to deal with the noisy signals acquired. The
results exhibit angle estimation error in the range of 4.5 degree azimuth and 1.6
degree elevation for one type of array structure and 2.2 degree azimuth and 0.7
degree elevation for two other types of array structures. The effect of wind noise
is very prominent for robotics systems and thus needs to be reduced effectively.
A study of wind noise reduction using nonnegative sparse coding and wind noise
dictionary has been presented in Schmidt et al. (2007). The performance of the
algorithm, applied to single-channel noisy speech, has been compared with the
Spectral subtraction and Qualcomm-ICSI-OGI noise reduction method in vary-
ing SNR conditions. Ince et al. (2009) presented two different approaches on
ego motion noise suppression based on template estimation and subtraction,
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namely, block-wise template subtraction and parameterized template subtrac-
tion. The authors in Ince et al. (2009) mentioned that the template subtraction
outperforms existing SSL methods but yet to apply the technique for speech
signals it is necessary to maintain the intelligibility and apply the method from
single-channel to multichannel as future work. In their other work, the authors
used a combination of histogram-based recursive level estimation for stationary
noise estimation and template-based nonstationary noise estimation for single-
channel speech enhancement (Ince et al., 2011). Fan et al. (2010) presented the
localization approach using a special structure of a planar microphone array.
The quasi-L1 autocorrelation and interpolation algorithms used in this paper
for delay measurement increase the estimation accuracy. The result shows an
improved positioning accuracy for the four-microphone systems over the three-
microphone systems. For the purpose of automatic speech recognition (ASR)
in robots, it is necessary to eliminate the ego noise present in the microphone
recordings. Ince et al. (2010) developed an approach using the MUltiple SIgnal
Classification (MUSIC) algorithm for the direction of arrival (DOA) estimation
and applied it to the localized sound for source separation. For the evaluation
of the algorithm, Ince et al. (2010) classified the noise in three different types,
i.e., arm motion noise, leg motion noise, and head motion noise, and the re-
sults are discussed for the three separate cases. Results given in terms of word
correct rates in ASR systems exhibit 50% correctness for arm and leg motion
noise and 25% for strong head motion noise. The authors concluded the neces-
sity of both single- and multichannel noise template subtraction for dealing with
the head motion noise. An intensive study of the generalized cross-correlation
(GCC) algorithm for SSL has been presented in Chen et al. (2011). Different
signal weighting techniques like PHAT, ROTH, SCOT, and CC are compared in
depth. The algorithm tested here, for positioning of mechanical failure source,
produces 93% and 86% accuracy in terms of error less than 0.2 meter and 0.1
meter (variation in distance), respectively. Li et al. (2012) proposed a new ap-
proach using GCC-PHAT-ργ and the guided spectral-temporal position method
to reduce noise and reverberation based on GCC in mobile robots. The pro-
posed methods were evaluated and compared with the existing GCC algorithm
for different signal-to-noise ratio (SNR) (i.e., 10, 25, 40 dB) environments. The
method, presented in Li et al. (2012), achieves a localization accuracy of 99.55%
at an SNR of 40 dB. However, no test results have been provided for the neg-
ative SNR (very strong noise) scenario. As the authors have mentioned, this
approach is useful for real-time processing. Velasco et al. (2012) implemented
an approach based on beam forming for indoor acoustic source localization. The
algorithm uses a modified version of Steered Response Power (SRP), called the
SRP-PHAT, for the acoustic power mapping of the environment and predic-
tion of a generative linear model. In addition, an optimization-based approach
is used for model fitting and consequent source localization. The experimen-
tal result of a speech database demonstrated an error reduction of up to 30%
compared to the traditional SRP-PHAT algorithm. Another work proposed in



A novel sound source localization method Chapter | 15 381

Nakadai et al. (2012) takes into account the dynamically varying acoustic en-
vironment for human–robot interactions. The study includes MUSIC and its
variation based on the generalized eigenvalue decomposition for noise-robust
SSL and template-based ego noise suppression. The proposed approach has
been evaluated based on the word correct rate in the ASR system and the accu-
racy in different SNR systems. The template subtraction approach for ego noise
suppression has outperformed other methods even with negative SNR. The work
presented in Blandin et al. (2012) discussed an in-depth theory on the different
TDOA estimation methods including the popular angular spectrum methods and
comparatively less explored clustering methods. The authors discussed five new
methods for multiple TDOA estimation and source separation based on SNR
weighting.

Recently, Löllmann et al. (2014) explored an overview of the challenges re-
lated to the development of audition systems and acoustic signal analysis in
humanoid robots. The authors in Löllmann et al. (2014) discussed the ego noise
and its characteristics along with the acoustic echo control schemes. Another ap-
proach for ego motion noise suppression, presented by Tezuka et al. (2014), ex-
tracts the noise feature using semiblind infinite nonnegative matrix factorization
(SBINMF). SBINMF does not require any means for system motion analysis in
noise estimation. The results indicated that SBINFM performs well compared
to the extensively used template-based method. Huang and Wang (2014) pre-
sented a novel algorithm to develop a spherical estimating signal parameter via
rotational invariance technique (ESPRIT), an approach using an array signal
model, for spherical microphone array-based source localization. ESPRIT per-
forms well as a 3D localization algorithm with low computational cost. Time
domain beam forming methods, developed by Wang and Choy (2015), imple-
ment an approach for side-lobe suppression and an increased spatial resolution
scanning strategy near the sound field for accurate SSL. The blind source sep-
aration (BSS) algorithm plays an important role in multiple SSL as studied
in Nogueira and Petraglia (2015). But, in the BSS algorithm the accuracy of
SSL largely varies with the distance between the microphone pair in the array
structure and needs to be improved further. Schmidt et al. (2016) presented an
approach for ego noise suppression in robots based on multichannel dictionary
learning where the system learns a dictionary containing the spatial and spec-
tral characteristics of the varying noise and a nonlinear classifier is designed for
noise reduction. This motor data-guided method has been tested to perform well
for the microphone array structure that was not learned by the system previously.
Dorfan et al. (2016) proposed two approaches, namely, batch algorithm based
on the maximum likelihood criterion optimized via expectation-maximization
iterations and particle filter for sequential Bayesian estimation in SSL with
moving microphone system. Jung et al. (2017) developed a method based on
the golden selection searching for SSL. The algorithm proposed in Jung et al.
(2017) aims at reducing the computational cost by narrowing the search region
but maintaining high accuracy of localization at the same time. The method
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presented in Löllmann et al. (2017) explored an insight into microphone array
signal processing including microphone array arrangement, ego noise removal,
echo cancelation, and audio source tracking. Later on, Haubner et al. (2018)
implemented a multichannel nonnegative matrix factorization (MNMF) algo-
rithm to suppress ego noise. The results obtained using MNMF reveal that for
ego noise suppression multichannel NMF outperforms single-channel NMF,
i.e., joint ego noise suppression is advantageous over considering each chan-
nel separately. Gala et al. (2018) proposed a novel method for orientation and
distance localization of sound sources in 3D using the interaural time difference
cue using a self-rotational bimicrophone array. The results exhibit an error of
4 degrees in angle localization and 0.6 m in distance localization in a very low
SNR environment. Xenaki and Boldt (2018) estimated the DOA by sparse sig-
nal reconstruction using sparse Bayesian learning (SBL). The utility of this high
resolution SBL beam forming technique resulted in speech separation along
with DOA calculation. Ma et al. (2018) adapted the deep neural network (DNN)
tool for binaural source localization. The model-based information of the target
source and background source are estimated using the spectral characteristics
extracted and these models are used for explaining the mixed observation in the
DNN-based source localization system. This approach performs very well in the
presence of many interfering sound sources.

15.2.1 Related work with drones

Several works have been carried out to analyze the noises present in the au-
dition system embedded in humanoid and moving robots. A similar analysis
for UAVs is a comparatively new area of research and gained focus after 2012.
Okutani et al. (2012) proposed a modified algorithm based on MUSIC that par-
ticularly deals with the dynamically varying noise present in microphone array
recordings of a quadcopter used for auditory scene analysis. The incremental
generalized eigenvalue decomposition (iGEVD-MUSIC) algorithm presented
by the authors performs well even in high noise, i.e., negative SNR environment.
The approach considers an adaptive estimation of the noise correlation matrix
with results in suppression of noise of varying nature and accurate source lo-
calization is possible, as is shown in their results. Another work published in
Basiri et al. (2012) presented a system for narrowband SSL using a microaerial
vehicle (MAV). The authors used a method based on particle filter to extract
information from cross-correlation of the signals of the spatially separated mi-
crophones. However, the algorithm is implemented for whistle and alarm sound
localization. The performance of the algorithm for human voice has not been
evaluated. Furukawa et al. (2013) presented a method for SSL by multirotor
UAV using the adaptive noise correlation matrix. Gaussian process regression
has been used to estimate the noise correlation matrix. The results show that the
proposed algorithm produces more prominent peaks in the MUSIC spectrum
than that produced by other existing algorithms. Ohata et al. (2014) proposed a
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version of iGEVD-MUSIC with correlation matrix scaling to improve the SSL
performance by soft whitening of noise and it facilitates low computational cost.
The algorithm has been evaluated using both circular and spherical microphone
array prototypes, and the results show that the method performs well for SSL in
the outdoor environment and is efficient for real-time processing. The study by
Wang and Cavallaro (2016) suggested a model for the ego noise as the sum of
N directional noises and one diffuse noise, where N represents the number of
rotors present in the UAV. Besides, considering the microphone array and motor
orientation to be stationary, the mixing model of the noises to the clean audio
is to be stationary and deterministic as well. The results of the study show that
it is possible to achieve SNR improvement using the proposed model given the
number of microphones used is less than six, i.e., the number of directional ego
noises is five. Beyond this limit, the performance of the noise suppression algo-
rithm decreases significantly. Morito et al. (2016) discussed a modified version
of DNN, called partially shared DNN (PS-DNN), for human speech separa-
tion and identification using UAV-embedded microphone arrays. The proposed
algorithm is particularly useful because, in contrast to traditional DNNs that re-
quire huge data for training, the PS-DNN requires fewer amounts of annotated
data and can learn multiple tasks simultaneously. Though the experimental re-
sults show good performance of this algorithm compared to the DNN-based
approach, the performance for multiple source localization and separation using
this method is yet to be evaluated. In another approach, Wang and Cavallaro
(2018) suggested time frequency processing for the localization and enhance-
ment of target sound by analyzing the spectral and spatial features of the ego
noise. The algorithm first estimates the local DOA in each time frequency bin
separately and using the statistical analysis implements a spatial filter to localize
the target source in a particular direction. A DOA weighting scheme is imple-
mented to achieve accurate SSL even in a very low SNR condition. The recent
work in Misra et al. (2018) developed a binaural acoustic sensing system using
a pair of microphones for drone-based SSL. This study is important as it deals
with a lower number of sensors, thus reducing the payload of the mobile system
and still achieving significant SNR improvement in high noise levels.

15.3 Problem formulation

Drones equipped with microphones have promising applications in SAR oper-
ations but the studies so far indicated that only SSL algorithms applied to the
captured audio cannot yield the desired results. Due to the presence of high am-
plitude noises, it is necessary to first suppress the noise components from the
data. Thus it has become a more challenging task as traditional noise reduction
algorithms that are applied to low background noises completely fail in this ap-
plication. In this work, we have presented a novel approach for the elimination
of ego noise and wind noise from drone-captured audio data and hence local-
ization of the sound source is performed for application in SAR operations and
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disaster management. An analysis of the major noise components appeared in a
drone-embedded systems has been addressed.

15.3.1 Ego noise

In robotic systems, the data captured using the acoustic sensors are heavily af-
fected by the noise of the internal mechanical system of the robot. The airflow
noise of the rotating fans and propellers in aerial robots adds to the system noise
– this high amplitude noise is termed ego noise (Ince et al., 2009; Tezuka et
al., 2014; Wang and Cavallaro, 2016). The special type of ego noise generated
during the motion of the robot is called ego motion noise. The ego noise has
two components – stationary noise produced by static sources and nonstation-
ary noise from the moving components of the system. For example, the fans
inside the robot structure will produce ego noise stationary in nature whereas
the motors produce nonstationary noise. The analysis of nonstationary noise is
difficult as its pattern varies with the movement and positioning of the robotic
system and thus is unpredictable. In particular, for the drone system, the ego
noise is generated by its motors and rotating propellers. For the need of position
variation and stabilization in air, it is necessary to change the speed of the drone
motors very quickly which generates the ego noise. Figs. 15.1a–15.1e show the
time domain plots of the ego noise, captured at Microphone 1, generated by
Motor 2 of the drone at five different speeds (50, 60, 70, 80, and 90 rpm). From
these figures it is obvious that with the variation in motor speed the ego noise
signal waveform varies in amplitude. The initial silent portion of the noise wave-
form represents the time span when the motor just starts to rotate. Once it starts
rotating with the predefined speed, the noise amplitude reaches a high value, as
illustrated in Figs. 15.1a–15.1e.

Figs. 15.2a–15.2d highlight the variation in the ego noise waveform at
80 rpm captured by Microphone 2 for the four motors of the drone. From these
figures, it can be concluded that Motor 2 is closer to Microphone 2 than the other
motors because the mean amplitude of noise generated at Motor 2 is higher than
that of other motor noises. The time domain nature of the same is different from
the other three. In addition, from the analysis of the frequency components, de-
picted in Figs. 15.3a and 15.3b, it can be observed that for the noise generated by
a motor rotating at X rpm, the noise has a fundamental frequency of X Hz and
harmonic components are present at multiples of X Hz. Hence the ego motor
noise is related to the rotational speed of the motor.

Figs. 15.3a and 15.3b present the power spectral density (PSD) of the noise
generated by Motor 1 at a speed of 50 rpm and Motor 4 at 80 rpm, respectively.
It can be observed that the PSD in Fig. 15.3a has its first peak at normalized
frequency equal to 0.002224 rad/sample, i.e., 50 Hz. The next peaks appear at
the multiples of 50 Hz. Similarly, for Fig. 15.3b the first peak is at frequency
80 Hz and consecutive peaks occur at the harmonics of 80 Hz. From this obser-
vation, we can conclude that with respect to the speech signal recorded by the
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FIGURE 15.1 Time domain plot of ego noise generated by Motor 2 at different speeds captured by
microphone 1. (a) 50 rpm. (b) 60 rpm. (c) 70 rpm. (d) 80 rpm. (e) 90 rpm.

microphone array system, the amplitude of the noise components is so high that
the original signal gets completely buried in noise, as presented in Figs. 15.4a
and 15.4b.

15.3.2 Wind noise
Another noise component that heavily affects the recordings by the drone-
embedded microphone array is wind noise caused by the rotating propellers
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FIGURE 15.2 Time domain plot of ego noise generated by (a) Motor 1, (b) Motor 2, (c) Motor 3,
and (d) Motor 4 at 80 rpm and captured by microphone 2.

FIGURE 15.3 Relation of ego noise with motor speed for (a) Motor 1 and 50 rpm and (b) Motor 4
and 80 rpm.

(Schmidt et al., 2007). As the four propellers rotate simultaneously, they cut the
air and produce heavy noise. In addition, the drone movement and the outdoor
environment are responsible for the generation of wind noise. Wind noise is of
high power and has low frequency – lying in the frequency range of speech sig-
nals. This nature makes it particularly difficult to separate the wind noise from
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FIGURE 15.4 Time frequency spectrum of (a) clean speech signal and (b) speech signal corrupted
by ego noise.

FIGURE 15.5 Spectrum of ego noise- and wind noise-affected clean speech.

clean speech. Fig. 15.5 demonstrates how the spectrum of a clean speech gets
affected by heavy wind and ego noise of a drone. It is obvious that any speech
signal can hardly be identified from the spectrum as it appears entirely noisy.

15.4 Proposed algorithm

The algorithms proposed in this chapter aim at the suppression of the ego noise
and wind noise present in the recordings by the drone microphones. It uses
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FIGURE 15.6 Block diagram of the localization technique used in proposed Algorithm 1.

an optimization-based approach for noise estimation where we consider a set
of known noise signals and their features to estimate an unknown noise. We
have presented here two algorithms, named proposed Algorithm 1 and proposed
Algorithm 2. These two algorithms adopt two different noise subtraction meth-
ods discussed later. After effective noise elimination, it is possible to apply the
source localization algorithm for accurate position identification of the speech
source. There are three main approaches for the SSL: (a) calculating TDOA,
(b) estimating the steered response power (SRP), and (c) the MUSIC approach.
We adopt the TDOA estimation-based approach for the source localization. As
Blandin et al. (2012) discussed, TDOA for a pair of sensors can be identified
using clustering and angular spectrum-based approaches. But the latter being
applicable to any microphone spacing and independent of any initialization, we
have used this approach in our study. Fig. 15.6 shows the block schematic of
proposed Algorithm 1. Each block represents a step in the localization process.
The first two blocks are mainly the preprocessing steps. The filtering block re-
moves the background stationary noise that is characterized by high frequencies.
Thus, the output of this block contains only the original signal mixed with ego
motor noise and the wind noise only. The next block then detects whether any
speech signal is actually present in the input. This is determined by the probabil-
ity measure depending on the SNR value. For this purpose, a particular threshold
is chosen as the decision boundary. If the probability is more than the threshold,
we consider that it contains a speech signal and further processing is carried
out. Otherwise, we decide that it is a noise-only signal. The preprocessed sig-
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FIGURE 15.7 Block diagram of the localization technique used in proposed Algorithm 2.

nal is now used to estimate the noise by matching the unknown noise with the
noise signals present in the noise pool. Once the best fitting of the noise signal
is identified we move to the next block for noise elimination from the original
noisy signal. After noise suppression, the GCC-PHAT algorithm is used for the
localization of the source signal by estimating the cross-correlation peaks. The
steps are represented in the last three blocks of the schematic. The details of
each block are discussed in Section 15.4.3.3.

Fig. 15.7 presents the schematic block of proposed Algorithm 2. The pre-
processing technique applied here is the same as that applied for proposed
Algorithm 1. The second block that identifies the speech presence probability
detects the portion of the signal that has an active voice signal for a significant
time. The speech containing frames of the signal are utilized for noise estima-
tion in the next step. In this algorithm, the noise estimation block takes as input
the current speed information of the motors and a set of noise signals at sam-
ple speeds. This is a supervised approach and the Gbest-guided cuckoo search
(GCS) estimates the optimum weights for the motor noises that yield the best
estimate of the overall noise. The linear relationship between motor speed and
motor noise has been exploited here. This estimation of noise is the input to the
multichannel filtering block. The Wiener filter suppresses the input noise from
the original signal. The denoised output of the filter is used for the localization
of the source using GCC-PHAT as has been shown in Fig. 15.6. The details are
provided in Section 15.4.3.4.
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FIGURE 15.8 Response of the low pass filter with cut-off frequency 4 kHz.

FIGURE 15.9 Block diagram representation of the filter with its input and output.

15.4.1 Preprocessing filter

Except for the nonstationary ego and wind noise, the signals captured by the mi-
crophone array contain noise generated from the structural vibration and other
electronic components of the system. As these are high frequency stationary
noise and do not overlap with the speech signal band (<10 kHz), a low pass filter
with proper cut-off frequency can remove these noise components without dis-
torting the original speech component. Fig. 15.8 shows the frequency response
of the low pass filter with cut-off frequency 4 kHz and stop-band attenuation
of 60 dB. Before applying the ego noise suppression algorithm, we implement
this preprocessing filter to eliminate the background noises. However, it should
be noted that this filtering technique does not affect the low frequency non-
stationary noises. As represented in Fig. 15.9, the input to the filtering block
is a noisy signal having a wide range of frequency components. It is passed
through a low pass filter with cut-off frequency fixed to 4 kHz. The output sig-
nal PSD reveals that the frequency components beyond the cut-off frequency
are attenuated to low amplitude where the low frequency components remain
unaffected.
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15.4.2 Voice activity detector

As a part of the preprocessing block, we first try to identify whether an unknown
signal contains any speech signal and this is determined by using a voice activity
detector block. As discussed in Sohn et al. (1999), the detector estimates the
probability of speech (Pspeech) in the current frame of analysis by evaluating a
likelihood ratio (�k) given by

�k = 1

1 + αk

exp

(
βkαk

1 + αk

)
, (15.1)

where αk denotes the ratio of the variance of clean speech and noise for the kth

frame, called the a priori SNR, and βk represents the ratio of the variance of
noise-contaminated speech and noise for the kth frame, called the a posteriori
SNR. The decision of speech or no speech for the particular frame is identified
based on the value of the quantity �k . As the authors have discussed, having
knowledge of the statistical properties of the noise it is possible to evaluate
βk for the unknown signal. From the βk value, αk can be estimated using a
maximum likelihood estimator as

α̂k = βk − 1. (15.2)

To detect if the drone microphone recordings contain any speech content it
is beneficial to carry out the time frame-wise analysis approach. As an effect
of ego noise on the clean speech, the SNR of the entire signal decreases to
a very low value. In addition, the overall Pspeech in the signal becomes very
low, indicating no speech. However, the analysis shows that this inference is
erroneous in most of the cases. As an alternative, for each small frame of the
signal, we have calculated Pspeech using the algorithm discussed above. Then we
find the frame having maximum and consistent probability of speech. We define
consistency by the fact that if for a test signal, the ith frame has a maximum
Pspeech value equal to pi , then at least n frames before and after the ith frame
will have a Pspeech value in the range [pi − δ,pi + δ], where δ is a very small
quantity. If the consistency is not maintained, then we check for the next highest
value of Pspeech after pi . This approach ensures that the speech is active in the
signal for a significant time. The block diagram in Fig. 15.10 represents the
proposed approach to identify the part of the signal containing speech.

Fig. 15.12a shows the probability of speech in different time frames of the
noisy speech signal with its time domain representation given in Fig. 15.11.
As can be observed, due to the presence of high amplitude noise the varia-
tion of speech present in the signal cannot be detected visually. However, from
Fig. 15.12b, we can infer which portion of the signal contains speech and de-
tect the start and end time points of the speech frames. For the M-channel input
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FIGURE 15.10 Block schematic of the voice activity detector.

FIGURE 15.11 Time domain representation of noisy signal containing speech signal buried in
heavy ego noise.

signal, the probability of speech is given by the average of the probabilities in
each of the channels. For consistency identification, we have set the parameter
values n = 7 and δ = 0.1. The result of the test is shown in Fig. 15.12b. The
speech frame (indicated by the green (light gray in print version) window) has a
maximum Pspeech = 0.949. The frame (indicated by the red (gray in print ver-
sion) window) contains a time frame with the highest Pspeech value but does not
follow the consistency criteria, and therefore it cannot be considered as a speech
frame.

15.4.3 Proposed denoising algorithms based on cuckoo search
algorithm

As discussed previously, it is required to suppress the noise components from
the captured signals before applying the source localization algorithm. In this
work, we propose a cuckoo search optimization-based algorithm for effective
noise elimination.
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FIGURE 15.12 (a) Variation in the probability of speech evaluated for noisy signal. (b) Result of
the probability consistency checking test.

15.4.3.1 Cuckoo search algorithm
Cuckoo search algorithm (CSA) is a newly proposed optimization algorithm
(Yang and Deb, 2010). The algorithm is based on the natural reproduction of
cuckoo birds and the hypothesis of the Levy flight process. In Levy flight, the
random walk is obtained by Levy’s distribution as

Levy (λ) =
∣∣∣∣ 	 (1 + λ) × sin (πλ/2)

	 ((1 + λ)/2) × λ × 2(λ−1)/2

∣∣∣∣
1/λ

. (15.3)

Thus, with the help of Levy’s distribution, the cuckoo birds’ egg laying behavior
is described by

xt+1
i = xt

i + α ⊕ Levy (λ) , (15.4)

where α > 0 represents the step size, 1 < λ ≤ 3, and “⊕” signifies entry-wise
multiplication. The traditional CSA follows three assumptions: (a) each cuckoo
lays only one egg and dumps it in a randomly selected nest, (b) the best nests
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with high quality eggs will survive for the next generation, and (c) the number of
available host nests is fixed and a host can discover an alien egg with probability
pa ∈ [0,1]. The last condition is maintained by replacing a fraction (pa) of n

host nests with new nests.

15.4.3.2 Improved cuckoo search algorithm
In standard CSA, the search equation used by the cuckoos is entirely based
on the random walks, which may not guarantee a fast convergence. Therefore,
here we have incorporated four modifications in the proposed CSA algorithm
(Dhabal and Venkateswaran, 2017), to enhance its convergence rate and simul-
taneously to make it auto-tuned. The changes are as follows.

(a) Modification in replacement strategy: Normally, in standard CSA, the re-
placement of old nests is performed at random, which reduces the convergence
speed. Thus, instead of searching in random, replacement of old nests is per-
formed based on global-best solution so that better control of the step size is
achieved. The modified equation is as follows:

nestnew = nestold + rand ∗ (nestbest − nestold ) ⊕ K if K > pa, (15.5)

where nestold and nestbest represent the permutation matrix obtained from the
old and best nests, respectively, and nestnew is the new nest generated in the cur-
rent iteration. As the generations of new nests depend on the best nest obtained
so far, it is named Gbest-guided cuckoo search (GCS) algorithm.

(b) Modification in λ: For better exploration in searching, instead of assuming
a fixed value of λ = 1.5 in Levy’s distribution, here we vary λ as follows:

λ = (λmax − λmin) × (itermax − iter)

itermax
+ λmin, (15.6)

where λmax → λmin = 1.5 → 1 and itermax and iter indicate the maximum and
current iteration, respectively.

(c) Modification in pa: Yang and Deb (2010) suggested that the CSA outper-
forms Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) in terms
of the number of parameters to be tuned – the probability of abandoned nests
(pa). They found that the convergence rate of CSA is insensitive to pa and the
setting of pa = 0.25 is sufficient for all problems. But experimental results re-
veal that for complex and multimodal problems, the convergence rate can be
improved by suitably adjusting the parameter pa . Therefore, to make the algo-
rithm self-tuned pa is varied based on the following equation:

pa = rand/D, (15.7)

where D denotes the dimension of the problem and rand ∈ [0,1] is a random
number. In our work, we have used the GCS algorithm to optimize the ego noise
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model for best fit with the original noise present in the signal. Here we present
two approaches for modeling the noise using GCS.

15.4.3.3 Proposed Algorithm 1
From the knowledge of the ego noise nature generated by the motors of a drone
at different speeds, the algorithm takes as input a noise pool containing the mo-
tor noise signals. The proposed algorithm selects a noise signal randomly from
the noise pool and computes the value of the fitness function. This is performed
to identify the noise signal which best matches the noise present in the unknown
noisy input. For this particular problem, we have defined the fitness function as
the MSE between the noisy audio signal and the noise as follows:

minF = MSE = 1

N

N∑
k=1

(xni (k) − ni (k))2 , (15.8)

where “N” denotes the number of samples of the signal, xni is the ith sample
of the input noisy signal, and ni is the ith sample of a randomly selected noise
from the noise pool. The task of the GCS is algorithm is to choose the best fit
ni to minimize the value of F . Using temporal subtraction the best fitted ni is
removed from the original signal, resulting in a denoised signal applicable for
source localization. In Figs. 15.13a–15.13d, the results obtained by proposed
Algorithm 1 are presented. After obtaining the denoised audio signal, the GCC-
PHAT technique is applied to localize the sound source. The PSD of an unknown
noisy signal is presented in Fig. 15.13a. Considering this unknown input, the
GCS algorithm searches for a known noise signal present in the noise pool. The
result of the search is a noise signal which best matches the noise present in
the input signal. The PSD of this estimated noise is given in Fig. 15.13b. From
the two plots, it can be concluded that they have a similar variation of power
at different frequencies. The two spectra in Figs. 15.13c and 15.13d correspond
to the noisy signal and the signal obtained after the temporal subtraction of the
noise. The two spectra are indeed distinguishable. In Fig. 15.13d the speech
components are more prominent than in Fig. 15.13c. The flowchart of proposed
Algorithm 1 is presented in Fig. 15.14.

15.4.3.4 Proposed Algorithm 2
This algorithm considers a hybrid approach of noise estimation by comparing
with the original noisy input signal as stated for the previous approach and ex-
ploits the harmonic components present in the ego noise components as has been
discussed in Section 15.3.1. As a first step, the algorithm estimates the ego noise
generated by each propeller/motor i, i = 1, . . . ,4. As a motor rotating at speed
(v) generates noise containing harmonics at frequency f = v Hz, it is possible
to estimate the ego noise at any unknown speed (v) from the knowledge of the
ego noise at two other speeds of the motor as follows. Let us consider the ith
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FIGURE 15.13 (a) PSD of unknown signal containing speech buried in high amplitude noise. (b)
PSD of the noise estimated for noisy input given in (a) using proposed Algorithm 1. (c) Spectrum
of the noisy input signal. (d) Spectrum of the signal after attenuating the estimated noise using
temporal subtraction.

motor rotating with speed vi and the ego noise produced by the same motor at
speeds v

upper
i and vlower

i are known to be equal to n
upper
i and nlower

i , respec-
tively. Then considering the upper and lower weights as wui and wli we can
estimate the ego motor noise at current speed (vi) as

ni = wlin
lower
i + wuin

upper
i , (15.9)

where wui , wli ∈ (0,1)∀i. Therefore, for a particular input signal xn, the esti-
mated noise component (nestimated) can be represented as follows:

nestimated = 〈w.n〉 ,

or

nestimated = wT n =
4∑

i=1

wini, (15.10)

where w = [w1w2w3w4]T is called the weight vector, n = [n1n2n3n4]T is the
noise component vector, and ni is given as in equation (15.9) ∀i. The GCS al-
gorithm is used to determine the optimum value of the vector w and the weights
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FIGURE 15.14 Flowchart of proposed Algorithm 1.

{wuiwli} ∀i so that it minimizes the MSE given in equation (15.8) subject to the
following constraints:

1. wli + wui = 1∀i,
2.

∑
i wi = 1.
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For better estimation of noise, a two-level approach using GCS is implemented
here. In the first level, the unknown noisy signal is divided into several over-
lapping windows. For each window, a noise signal is estimated using GCS
following equations (15.9) and (15.10) and the value of the cost function is
calculated. For the next level of estimation, the algorithm considers only that
window for which the value of the cost function evaluated in level 1 is mini-
mum because the minimum cost function implies maximum similarity with the
unknown noise present in the signal. It has been verified that the signal por-
tion identified by this method has minimum speech probability, calculated using
the voice activity detector (VAD). Thus this portion has maximum noise and
for estimating the unknown noise this portion performs the best. Then, GCS is
applied to the selected window to obtain the updated set of weights and weight
vectors from which the estimated noise nestimated can be derived. This two-level
approach enhances the performance of the optimization algorithm and results in
a better estimation of the unknown noise. The estimated noise is taken as the
reference signal for the multichannel Wiener filter as discussed in Strauss et al.
(2018). Using the multichannel Wiener filter, the original signal Ŝ (t,ω) can be
estimated as

Ŝ (t,ω) = WMWF (f )X (t,ω) , (15.11)

WMWF (f ) = RXX (f )−1 (RXX (f ) − RNN (f )) , (15.12)

where WMWF (f ) represents the multichannel Wiener filter and RXX (f ) and
RNN (f ) represent the covariance matrix of the unknown noisy signal and the
estimated noise:

RXX (f ) = cov [X,X] = E
[
(X − μX) (X − μX)T

]
= E

[
XXT

]
− μXμT

X,

(15.13)

RNN (f ) = cov [N,N ] = E
[
(N − μN) (N − μN)T

]
= E

[
NNT

]
− μNμT

N,

(15.14)

where E (·), (·)T , and μ denote expectation, matrix transpose, and the mean of
the variables, respectively.

Fig. 15.15 illustrates the results obtained using proposed Algorithm 2. The
PSD of the unknown noisy signal has been presented in Fig. 15.15a and the noise
estimated by proposed Algorithm 2 for this unknown signal has a PSD shown in
Fig. 15.15b. The spectrum of the noisy signals presented in Fig. 15.15c shows
that due to very heavy noise the speech signal present in between the time frame
index 100 to 200 is completely attenuated. A comparatively enhanced result
is obtained using the multichannel Wiener filter and the spectrum of the speech
signal present in the noisy signal is more identifiable than the previous case. This
result has been shown in Fig. 15.15d. The GCC-PHAT algorithm is then applied
to the Wiener-filtered signal to extract the coordinate (azimuth and elevation)
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FIGURE 15.15 (a) PSD of unknown signal containing speech buried in high amplitude noise. (b)
PSD of the noise estimated for noisy input given in (a) using proposed Algorithm 2. (c) Spectrum
of the noisy input signal. (d) Spectrum of the signal after attenuating the estimated noise using
multichannel Wiener filter.

information of the sound source. Fig. 15.16 shows the flowchart of proposed
Algorithm 2.

15.4.4 Time difference of arrival

For a pair of sensors and a source it is possible to measure the difference in
time taken by an acoustic signal emitted by the source to reach the two sensors,
generally microphones for SSL. If the propagation speed of the signal is known,
then from the knowledge of the difference in arrival time we can estimate the
distance difference (Blandin et al., 2012). Suppose there are two microphones,
Mic 1 and Mic 2, with coordinates (x1, y1) and (x2, y2), respectively. We have
a source S with a coordinate (xs, ys). For our purpose we can safely assume a
far-field model, i.e., d1, d2 >> dm, for the sound source, where the sound waves
contain planar wavefronts when they reach the microphones. Let t1 and t2 be
the arrival times of the acoustic signals to Mic 1 and Mic 2, respectively, given
by t1 = d1/c and t2 = d2/c. If �t is the difference in arrival time for the two
sensors and �d is the difference in distance, then we can write

�t = t1 − t2,

or �t = d1/c − d2/c

∴ �d = c�t, (15.15)
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FIGURE 15.16 Flowchart of proposed Algorithm 2.

where �d = d1 − d2 and c denotes the propagation speed of the signal. Further,
from Fig. 15.17, we obtain

�d =
√

(x1 − xs)
2 + (y1 − ys)

2 −
√

(x2 − xs)
2 + (y2 − ys)

2. (15.16)
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FIGURE 15.17 Orientation of source and microphones.

Similarly, if we have another pair of sensors we can get another difference in
distance in terms of (xs, ys). Assuming that the microphone sensor array geome-
try is precisely known, their coordinates are known to us. Hence using numerical
methods we find the solution for (xs, ys). It should be noted that for the 2D po-
sition estimation of the source it is necessary to have two such pairs of receivers,
i.e., at least three receivers are required. Again, from the hyperbolic navigation
system, we can localize the source using TDOA. As defined, the hyperbola is
a set of points having a constant range difference from two points called its
foci. So, the point of intersection of all possible curves in the form of equation
(15.16) or the point of intersection of all possible hyperbolas considering all
the pairs of microphones gives the position of the acoustic emitter. Generalizing
this concept for 3D space and n microphones Mi , i = 1, . . . , n, and using vector
notation we can write

�dij =
∣∣∣ 
Mi − 
S

∣∣∣ −
∣∣∣ 
Mj − 
S

∣∣∣ , i, j = 1, . . . , n andi �= j, (15.17)

where �dij is the difference in distance for the microphone pair
(
Mi,Mj

)
and

is given by

�dij = cτij , (15.18)

τij being the time difference of arrival for the microphone pair
(
Mi,Mj

)
, and


Mi and 
S denote the position vector of the ith microphone and the source with
respect to an inertial frame of reference. Particularly for a UAV-embedded sys-
tem, we may consider the body-fixed coordinate system of the UAV as the
reference frame. Before we calculate the position of the source it is necessary to
find the quantity �t (the difference in arrival time). Cross-correlation is a very
powerful tool for estimating the time delays; it has been adopted in this work
for calculating �t . Now considering the received signals are ri (t), i = 1,2, for
a microphone pair we can write

ri (t) = s (t − ti ) ∗ h(t) + ni (t) , (15.19)
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where s (t) denotes the source signal, h(t) is the impulse response of the
medium between the source and the microphones, ni (t) represents the noise
component independent of the source signal, and the symbol ‘∗’ denotes the
convolution operation. The cross-correlation between the two signals is given
by

R (τ) =
∫ ∞

−∞
r1 (t) r2 (t + τ) dt. (15.20)

The function R (τ) attains the maximum value when τ equals the time delay,
i.e., when τ = �t . τ can be obtained by observing the position of occurrence of
the peak in the plot of R (τ) as follows:

τdesired = arg max (R (τ)) , (15.21)

�t = τdesired . (15.22)

This method of calculating TDOA is called GCC. From this we can find the
angular position of the source as follows. If θ is the angle of the source, then

θ = cos−1 (c�t/dm)

⇒ θ = cos−1 ((d1 − d2) /dm) . (15.23)

A more efficient approach to determine �t is using frequency domain cross-
correlation. A delay in the time domain corresponds to a phase difference in the
frequency domain. Therefore, to estimate the time difference we first transform
the received signal from the time domain to the frequency domain using short
time Fourier transform (STFT). Let Xi(t,ω) be the STFT of the received signal
ri (t). Then Xi(t,ω) is given by

Xi(t,ω) =
∫ ∞

−∞
ri (t)w (t − τ) exp (−jωt) dt, (15.24)

where w (t) represents a window function. From equation (15.19) we obtain

Xi (t,ω) = S (t − ti ,ω)H (t,ω) + Ni (t,ω) , (15.25)

where S,H , and Ni are the signals in a short time Fourier domain and (t,ω) is
the corresponding time frequency index. We define

X̂ (t,ω) = X(t,ω)/|X(t,ω)|, (15.26)

where X̂ (t,ω) preserves the phase information of X (t,ω) but it is normalized
to obtain unity gain for all frequencies and achieve robustness; X̂ (t,ω), when
inverse transformed to time domain, theoretically produces a peak at the corre-
sponding time delay value. Normalization helps in reducing the probability of
secondary peaks by reducing the effects of echo, reverberation, and noise. This
weighting scheme by taking the phase transform (PHAT) is known as GCC-
PHAT.
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15.5 Evaluation

In this section, we discuss the results obtained by applying the denoising algo-
rithm on the DREGON dataset and a simulated dataset.

15.5.1 Dataset and design of data acquisition system

Our proposed algorithm has been evaluated using the dataset provided by the
IEEE Signal Processing (SP) Cup, 2019 along with the DREGON dataset. This
dataset can be divided into two broad sections as follows.

Static data: The Static dataset contains 300 audio data each of eight channels,
i.e., each signal is recorded using an array of eight microphones. During the
recording of this type of signal, the drone was kept hovering at a particular
position, so for the Static data, the coordinate of the receiver is fixed. In addition,
the source is assumed to be fixed at a particular point throughout the study.
Hence it requires estimating only a single direction (azimuth and elevation) for
the sound source. The sampling frequency of the signals was fixed to the value
44.1 kHz and the length of each captured signal is 2 s. For each recording, the
rotor speeds of all four motors were varied and knowledge about the rpm value
of the rotors is available to the user. As the rotor speeds for each noisy signal
were different from the other, it is obvious that the nature of the ego noise varies
in relation to the speeds. Thus, in spite of the source and receiver system being
static, the ego noise varies for this situation. It is necessary to consider an ego
noise model in accordance with the variation of the rotor speeds.

Dynamic data: The Dynamic dataset contains 36 audio data each of eight chan-
nels, similar to the Static data. The sampling frequency of the signals was fixed
to the value 44.1 kHz and the length of each captured signal is 4 s. During the
recording of these signals, the drone was in the flight mode, covering a certain
area. The flights were performed in a large room with a moderate reverberation
level. Thus the coordinate of the drone system was varying continuously. Hence,
with respect to the frame of reference of the drone, the coordinate of the sound
source is time-varying. For this reason, it was required to estimate the position
(azimuth and elevation) of the source after every small interval of time; for our
evaluation we considered the interval to be 0.25 s, i.e., the entire signal was di-
vided into 15 windows. In the dynamic case, the speed of all the four rotors was
varied and knowledge about the rpm value of the rotors was available to the user.
The primary goal of this task was to identify the average azimuth and elevation
of the source when the drone was flying. As the system was in flight mode, the
effect of wind noise and the nature of the ego noise were different from that in
the static data and it was required to eliminate that noise properly. The dynamic
data have two subparts:

1. Broadband data: This dataset was created by emitting white noise from the
loudspeaker and the drone was flown over the speaker. The task was to iden-
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FIGURE 15.18 The drone-embedded microphone array system used for creating the DREGON
dataset (Strauss et al., 2018; Deleforge et al., 2019; IEEE Signal Processing Cup Syllabus, 2019).

tify the white noise source accurately. There were 20 such eight-channel
recordings.

2. Speech data: This dataset was created by emitting speech from the loud-
speaker and the drone was flown over the speaker. The task was to identify
the speech source coordinate after small time intervals. There were 16 such
eight-channel recordings.

Development data: This dataset contains the ego noise recordings of the drone.
These ego noises are generated mainly by the drone motors rotating at different
rpm (varying from 50 to 90 with step size 10). The recordings were captured
while rotating a single motor of the drone at a time. From these data, an under-
standing of the nature of the drone ego noise can be obtained.

Specification of the data acquisition system: As discussed in Strauss et al.
(2018), the DREGON dataset has been collected using a customizable quadro-
tor UAV manufactured by MikroKopter, Germany. The UAV was equipped with
four MK2832-35 motors and the sound recording system containing eight mi-
crophones in a cubic array and a sound card. The UAV control has been set up
using ODROID-XU4 Linux Computer which runs the Robot Operating System.
The TeleKyb-genom3 framework for implementing the low level flight control
receiving the body-frame velocity commands and Wi-Fi communication has
been built for the purpose of drone data transfer with the ground station. The
propellers’ speeds range from 15 turns/s when they start to around 95 turns/s
at maximum power. The total weight of the UAV system is 1.68 kg. The UAV
setup along with the microphone array is shown in Fig. 15.18. Figs. 15.19a and
15.19b show the positions of the eight microphones on the surface of the cube.
The azimuth and elevation angles, represented by θ and ϕ, have been calcu-
lated with reference to the center of the cubic structure. This is evident from the
orientation shown in Fig. 15.19a. The alignment of the microphone array with
respect to the UAV frame and its four arms is shown in Fig. 15.19b.
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FIGURE 15.19 Eight-MEMS microphone array, (a) placed as a cubical structure and (b) with
drone and the rotors in 3D space (Strauss et al., 2018; Deleforge et al., 2019; IEEE Signal Pro-
cessing Cup Syllabus, 2019).

15.5.2 Evaluation measures

For the evaluation of the results, we used the error estimates. The error denotes
the difference in the estimated and actual location of the source. The aim of the
algorithm is to minimize the distance between the two points; hence the permis-
sible value of the angle difference has been fixed to less than 10 degrees. The
evaluation is mainly based on two types of errors. Absolute error is the absolute
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FIGURE 15.20 The central angle (�σ ) between two points p and q, where λ and ϕ are the azimuth
and elevation angles, respectively.

value of the difference between the estimated angle value and the ground truth
value. If (θestimated , ϕestimated) and

(
θground−truth, ϕground−truth

)
are the esti-

mated and ground truth values of the azimuth and elevation angles, respectively,
then the absolute error is given by

errorθ = ∣∣θestimated − θground−truth

∣∣ , (15.27)

errorϕ = ∣∣ϕestimated − ϕground−truth

∣∣ . (15.28)

The second type of error is determined from the value of the great circle dis-
tance. This is the least distance between two points on a sphere measured along
the spherical surface (Fig. 15.20).1

The error value (�σ) called the central angle is given by the following equa-
tion:

�σ = arctan

√
(cosφ2 sin (�λ))2 + (cosφ1 sinφ2 − sinφ1 cosφ2 cos (�λ))2

sinφ1 sinφ2 + cosφ1 cosφ2 cos (�λ)
,

(15.29)
where (λ1, φ1) and (λ2, φ2) are the geographical longitude and latitude in ra-
dians of two points 1 and 2 and �λ, �φ are their absolute differences. The
localization is considered to be correct if �σ is less than 10 degrees. The SNR
of the unknown input signal and the output signal are estimated as a measure of
evaluation. The SNR is calculated as follows:

SNR = 10 log10

∑N−1
k=0 s2 (k)∑N−1
k=0 n2 (k)

. (15.30)

The improvement in SNR (�SNRdB ) is given by

�SNRdB = SNRout
dB − SNRin

dB. (15.31)

1 https://en.wikipedia.org/wiki/Great-circle_distance.

https://en.wikipedia.org/wiki/Great-circle_distance
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FIGURE 15.21 Response of Hamming window with 1024 points. (a) Time domain. (b) Frequency
domain.

A comparative study of the different algorithms has been presented based on the
value of the absolute error as well as the root mean square deviation (RMSD),

RMSD =
√∑N−1

k=0 (α̂k − αk)2

N
, (15.32)

where α and α̂ represent the actual and estimated values of the variable of inter-
est, respectively, and N is the total number of samples.

15.5.3 Parameter initialization

From the geometry, it is clear that the value of azimuth and elevation angles
should be in the range of [−179◦,180◦] and [−90◦,90◦], respectively. For the
evaluation, we have tried with different values of population size (NP) and max-
imum number of iterations (max_iter). NP and max_iter are finally fixed at 10
and 10, respectively, in order to obtain the optimum results. In addition, the
speed of sound has been considered to be equal to 343 m/s and the cut-off fre-
quency of the preprocessing filter has been fixed to 4 kHz as it produces a good
extent of elimination of background noise. For computing, the STFT of the mul-
tichannel signals window length was fixed to be 1024 samples and the following
Hamming window (Proakis and Manolakis, 1996) has been used:

w [n] = 0.54 − 0.46 cos

(
2πn

N − 1

)
, 0 ≤ n ≤ N − 1. (15.33)

This is a type of cosine sum window whose time and frequency domain re-
sponses are given in Figs. 15.21a and 15.21b, respectively.



408 Unmanned Aerial Systems: Theoretical Foundation and Applications

TABLE 15.1 Azimuth and elevation angles (in degrees) for the 50 signals from
the DREGON dataset.

Signal
number

Ground
truth

Without
denoising

Source
separation

Wavelet
denoising

Proposed
Algorithm 1

Proposed
Algorithm 2

λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ

2 60 −30 −95 90 −109 49 47 90 111 52 56 −19

3 45 0 45 0 45 0 −159 90 45 −30 45 0

4 75 0 78 1 75 1 115 90 75 −1 76 −1

5 90 −15 −179 90 −23 55 115 90 −36 66 90 −14

6 75 −15 −101 76 140 49 158 90 −100 76 78 −12

7 90 −15 −34 62 −44 54 115 90 −29 66 88 −13

8 90 0 90 0 89 1 70 90 90 0 90 0

10 45 −15 45 −16 43 −11 115 90 47 −14 45 −15

11 90 −15 −136 90 20 54 −133 90 99 80 88 −14

12 90 0 90 0 −108 49 −114 90 90 0 90 0

13 75 −15 47 90 −42 36 −133 90 −14 51 76 −15

16 90 −30 87 −28 90 −28 −179 −90 90 −28 90 −28

17 45 −15 −108 44 −106 45 −179 90 −108 51 45 −15

18 90 −30 −114 90 90 −23 −174 90 89 −27 89 −27

19 60 0 25 90 162 50 −179 90 −134 89 56 −3

20 45 0 −179 90 −25 59 −179 90 −25 59 45 0

22 75 −15 79 −15 81 −12 −179 90 75 −14 79 −15

25 75 0 −179 90 76 −1 115 90 75 −1 79 −1

31 60 −15 −25 57 −61 74 −179 90 −26 58 64 −15

33 75 −15 79 −11 79 −16 115 90 75 −14 77 −13

35 60 −15 25 90 108 43 −114 90 110 53 62 −12

36 60 −15 −179 90 63 −15 −133 90 59 −14 58 −14

37 75 −15 68 90 77 −15 115 90 75 −14 78 −14

39 45 −30 25 90 109 55 115 90 161 55 43 −29

40 75 −30 79 −28 73 −25 −179 90 76 −28 74 −25

41 75 −30 44 90 74 −22 156 90 75 −25 73 −24

42 75 0 79 0 75 1 115 90 76 0 76 0

43 60 −30 115 90 −124 85 −179 −90 58 −26 57 −21

45 60 −30 56 −26 57 −25 115 90 57 −25 57 −25

47 45 −15 −159 90 43 −11 −159 90 47 −15 45 −17

48 45 0 −31 60 45 0 115 90 45 0 45 0

49 60 −15 58 −16 −20 48 115 90 60 −15 59 −14
continued on next page

15.5.4 Experimental results

The evaluation of the proposed algorithms is performed using the Static data
from the DREGON dataset. Fifty test signals from the dataset were used for
the performance analysis. The results are presented in Table 15.1 in terms of
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TABLE 15.1 (continued)

Signal
number

Ground
truth

Without
denoising

Source
separation

Wavelet
denoising

Proposed
Algorithm 1

Proposed
Algorithm 2

λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ

51 60 −15 25 90 −25 59 115 90 −37 67 59 −13

55 90 −15 −136 90 −21 44 −159 90 −135 81 83 −11

57 45 0 −11 45 145 51 47 90 −17 55 45 0

58 60 −30 25 90 −63 53 25 90 161 55 61 −26

59 90 −15 −107 55 88 −15 70 90 89 −15 90 −14

60 90 −30 −36 54 −47 54 −11 11 −44 54 87 −26

62 60 0 56 −1 60 0 115 90 61 0 59 −2

67 45 −30 −106 55 −27 57 −159 90 −110 53 44 −26

69 90 −15 −26 55 −35 83 −159 90 −27 65 89 −13

72 45 0 −11 56 43 3 25 90 45 0 45 0

73 90 −30 85 90 80 76 115 90 114 54 88 −28

75 60 0 115 90 118 48 25 90 69 85 47 90

80 90 0 101 56 85 48 25 90 110 54 91 2

85 45 0 112 59 −134 89 −65 90 112 54 45 0

86 75 0 −133 90 30 87 −133 90 −114 90 79 −1

87 90 0 −174 90 −21 49 115 90 −18 48 90 0

88 45 −30 25 90 44 −31 115 90 45 −28 45 −26

89 90 −30 −101 45 −100 46 115 90 −107 50 89 −27

azimuth (λ) and elevation (ϕ) angles. The ground truth represents the original
azimuth and elevation angle values of the detected source. The estimations of
source location using our algorithm have been presented under columns named
proposed Algorithm 1 and proposed Algorithm 2. The column named “Without
denoising” represents the location estimation when only the GCC-PHAT algo-
rithm was used without any estimation of noise. The results have been compared
with that of the preexisting algorithms. The source separation algorithm by Gao
et al. (2013) has been extended from single-channel to multichannel and is used
to separate the true speech from the noise. This original speech signal was then
used for source position estimation. Another approach based on wavelet denois-
ing (Jain and Tiwari, 2017; Ali et al., 2017) for comparison. For example, if we
consider signal 11, it contains a speech signal originated from the location with
azimuth and elevation angles (in degrees) (90, −15). The location estimated by
proposed Algorithm 1 is (99, 80) and that of proposed Algorithm 2 is (88, −14).
With GCC-PHAT only the localization result equals (−136, 90). Using source
separation we get the result (20, 54) and estimation by wavelet algorithm gives
(−133, 90).

Fig. 15.22 shows the position localization results, i.e., azimuth (λ) and el-
evation (ϕ) angles of the static speech source represented in λ − ϕ plane.
For test signal 11, Figs. 15.22a–15.22e depict the results of localization and
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FIGURE 15.22 Azimuth and elevation angles for test signals DS11 and DS25 estimated by (a, f)
GCC only, (b, g) source separation, (c, h) wavelet denoising, (d, i) proposed Algorithm 1, and (e, j)
proposed Algorithm 2.
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Figs. 15.22f–15.22j illustrate the positions of signal 25. The result values are
given in Table 15.1. The marker represents the location of the static source.
It should be observed that if speech is present, the SNR automatically increases
and we can infer that the locations having a higher value of SNR are the probable
positions of the signal source. This is evident from the fact that in each of the lo-
calization results the markers are pointed at the high SNR regions. Figs. 15.22e
and 15.22j show the results for proposed Algorithm 2, and it yields the cor-
rect result without any ambiguity. For both cases, it contains a single region
with high SNR and that is the correct coordinate of the source. However, pro-
posed Algorithm 1 does not provide the correct result for every case. As can
be seen in Figs. 15.22d and 15.22i, the result is correct for Fig. 15.22i, but for
Fig. 15.22d there is ambiguity in the result. The algorithm is not able to mark
the correct region of high SNR; rather it identifies some other erroneous regions
as high SNR region and localizes the source there. Applying only the source
localization algorithm GCC, it is not possible to achieve correct coordinates.
Both results shown in Figs. 15.22a and 15.22f are incorrect. This is because the
high amplitude noise almost completely masks the speech source. Thus it indi-
cates the necessity of a noise suppression approach before applying the position
identification methods. It was mentioned previously that due to the nature of the
noise signals, traditional denoising algorithms cannot perform well for this case.
It is evident from the results in Figs. 15.22b, 15.22c, 15.22g, and 15.22h that the
estimation of both the source separation algorithm and the wavelet-based algo-
rithm are absolutely incorrect.

Figs. 15.23a and 15.23b show the variation in the value of the absolute errors
for azimuth and elevation angles estimated by GCC-PHAT, source separation
algorithm, wavelet denoising, proposed Algorithm 1, and proposed Algorithm 2
with respect to the ground truth values of the coordinate. As can be observed
for both plots, the error for proposed Algorithm 2 is lower than that for the
other approaches. For some signals, proposed Algorithm 1 performs as good as
proposed Algorithm 2 in estimating the angle values, but that is not consistent
for all signals. On the other hand, only GCC-PHAT localization cannot estimate
the coordinate of the source for noisy signals. The signals for which GCC-PHAT
estimation error is close to zero have been tested to contain very low noise. The
same is true for the other denoising algorithms. Thus, we can conclude that
proposed Algorithm 2 outperforms the other approaches for both azimuth and
elevation angle estimation. Fig. 15.24 shows the values of the central angle (�σ )
calculated using equation (15.29) and the coordinate estimates using the three
different algorithms. From the plot it is clear that using proposed Algorithm 2,
we obtain �σ less than 10 degrees for most of the test signals. But it is not true
for the other cases. Particularly, when only GCC is applied, the values of �σ

are much higher than 10 degrees. As stated previously, if �σ is less than 10
degrees, then only the localization is assumed to be correct, and we can now
conclude that proposed Algorithm 2 outperforms proposed Algorithm 1 in all
cases.
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FIGURE 15.23 Absolute errors with respect to ground truth estimated by three different algo-
rithms. (a) Azimuth angle. (b) Elevation angle.

FIGURE 15.24 Values of central angle estimated using three different algorithms.

Fig. 15.25 illustrates the SNR improvement achieved for the test signals
DS1-DS50 using proposed Algorithms 1 and 2. It can be observed that for pro-
posed Algorithm 2 SNR improvement values are very high, i.e., SNR of the
output signal is much higher than that of the input signal. So, proposed Al-
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FIGURE 15.25 Variation of output SNR with respect to input SNR for proposed Algorithms 1
and 2.

TABLE 15.2 Mean and RMSD of the error values; best results are indicated
in boldface.

Algorithm Absolute error in
azimuth angle

Absolute error in
elevation angle

Central angle

Mean RMSD Mean RMSD Mean RMSD

GCC-PHAT 89.02 90.92 68.4 44.52 40.18 25.13

Source
separation
algorithm

62.60 78.81 41.94 37.18 32.26 28.22

Wavelet
denoising

118.72 92.47 100.12 16.44 50.70 7.03

Proposed
Algorithm 1

55.16 68.51 41.12 38.95 27.98 27.32

Proposed
Algorithm 2

1.76 2.25 3.78 12.65 2.25 6.29

gorithm 2 not only offers noise suppression but it also enhances the original
speech signal. On the other hand, SNR improvement achieved from proposed
Algorithm 1 is almost equal to zero for all the signals. Thus, we conclude that
this algorithm does not perform any signal enhancement though it can yield cor-
rect localization of the signal source. In this context, it should be noted that for
the GCC-PHAT algorithm noise suppression is not performed. Hence, for that
case, there is no possibility of SNR improvement, and the output signal is the
same as the input noisy signal. Table 15.2 presents the mean and RMSD of the
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errors obtained using the three algorithms. For proposed Algorithm 2 the mean
and RMSD for all the three cases, namely, absolute error in azimuth angle, ab-
solute error in elevation angle, and the central angle, are very small, indicating
that it yields very accurate localization. Larger mean and deviation of errors in-
dicate erroneous position estimation. GCC-PHAT and wavelet denoising yields
the worst localization.

15.6 Discussion

For the evaluation of our proposed algorithms, 50 test signals were taken from
the dataset provided by Strauss et al. (2018). The localization was obtained
using GCC-PHAT, source separation algorithm, wavelet denoising, proposed
Algorithm 1, and proposed Algorithm 2, and the results have been compared
with the ground truth values. It has been shown that for all the signals the
GCC-PHAT algorithm fails to yield the correct result. The traditional noise sup-
pression approaches yield completely incorrect estimations. However, when this
same algorithm is applied after noise suppression, the error values are reduced
drastically. In addition, depending on the effectiveness of the noise suppression
block the error varies. We have considered both absolute errors and central angle
errors for the evaluation and for both cases proposed Algorithm 2 provides the
best results with both types of errors being in the range of less than 10 degrees.
Proposed Algorithm 2 achieves accuracy in the range of 1.76 degree for the az-
imuth angle, 3.78 degree for the elevation angle, and 2.25 degree for the central
angle. The mean and standard deviation measures of the results as depicted in
Table 15.2 indicate the same. It can be concluded that proposed Algorithm 2
outperforms the other two algorithms. In addition, this algorithm offers signal
enhancement along with source localization.

15.7 Conclusion

In this work, we have presented a novel approach for ego noise suppression and
SSL for the drone-embedded microphone array-based recordings that can be
applied during disaster management and for SAR operations to identify the po-
sition of the victim. Two separate algorithms are proposed for the estimation of
unknown ego noise using GCS optimization. In proposed Algorithm 1, temporal
subtraction of noise from the original noisy signal is applied, whereas proposed
Algorithm 2 uses the multichannel Wiener filter for attenuating the estimated
noise from the noisy input signal. Further GCC-PHAT localization is used for
speech source coordinate estimation. For the experimental validation, the pro-
posed algorithms have been evaluated using noisy signals containing a single
speech source, exhibiting significant performance improvements. The proposed
work can be further extended for localizing multiple sources simultaneously.
A hybrid approach of the GCS algorithm with other existing heuristic search-
based optimization algorithms can be implemented and tested for more accurate
noise elimination and SSL.
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